May 02, 2017 Volume 13 Issue 17
 

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Fasteners that change color with strain? Engineers create programmable silk-based mechanical components

A silk fibroin pin changes color from blue to red when the force applied reaches the material's yield point. [Source: Tufts Silk Lab]

 

 

Tufts University engineers have created a new format of solids made from silk protein that can be preprogrammed with biological, chemical, or optical functions, such as mechanical components that change color with strain, deliver drugs, or respond to light, according to a paper published online at the end of 2016 in Proceedings of the National Academy of Sciences (PNAS).

Using a water-based fabrication method based on protein self-assembly, the researchers generated three-dimensional bulk materials out of silk fibroin, the protein that gives silk its durability. Then they manipulated the bulk materials with water-soluble molecules to create multiple solid forms, from the nano- to the micro-scale, that have embedded, pre-designed functions.

For example, the researchers created a surgical pin that changes color as it nears its mechanical limits and is about to fail, functional screws that can be heated on demand in response to infrared light, and a biocompatible component that enables the sustained release of bioactive agents, such as enzymes.

This silk fibroin screw can be heated to 160° C when exposed only to infrared light. [Source: Tufts Silk Lab]

 

 

Although more research is needed, additional applications could include new mechanical components for orthopedics that can be embedded with growth factors or enzymes, a surgical screw that changes color as it reaches its torque limits, hardware such as nuts and bolts that sense and report on the environmental conditions of their surroundings, or household goods that can be remolded or reshaped.

Silk's unique crystalline structure makes it one of nature's toughest materials. Fibroin, an insoluble protein found in silk, has a remarkable ability to protect other materials while being fully biocompatible and biodegradable.

"The ability to embed functional elements in biopolymers, control their self-assembly, and modify their ultimate form creates significant opportunities for bio-inspired fabrication of high-performing multifunctional materials," said senior and corresponding study author Fiorenzo G. Omenetto, Ph.D. Omenetto is the Frank C. Doble Professor in the Department of Biomedical Engineering at Tufts University's School of Engineering and also has an appointment in the Department of Physics in the School of Arts and Sciences.

Paper authors also included Benedetto Marelli, Ph.D., formerly a post-doctoral associate in the Omenetto laboratory and now at MIT; Nereus Patel, formerly a graduate student in the Tufts Biomedical Engineering program and now working for Ecoseal in Australia; Thomas Duggan, visiting artist in residence, Silklab; Giovanni Perotto, Ph.D., Silklab; Elijah Shirman, Ph.D., Silklab; and David L. Kaplan, Ph.D., Stern Family Professor of Engineering, Tufts University.

Marelli, Omenetto, and Kaplan are listed as inventors in a patent application based on the technology described in the manuscript.

The work was supported by the Office of Naval Research (N00014-13-1-0596).

Reference
Benedetto Marelli, Nereus Patel, Thomas Duggan, Giovanni Perotto, Elijah Shirman, David L. Kaplan, and Fiorenzo G. Omenetto, "Directed self-assembly of silk fibroin into bulk materials: Programming function into mechanical forms from the nano- to macroscale," Proceedings of the National Academy of Sciences, published online Dec. 26. DOI: 10.1073/pnas.1612063114.

Source: Tufts University's School of Engineering

Published May 2017

Rate this article

[Fasteners that change color with strain? Engineers create programmable silk-based mechanical components]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2017 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy